Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Parasit Vectors ; 17(1): 181, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589957

ABSTRACT

ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS: Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS: A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS: The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.


Subject(s)
Anopheles , Female , Animals , Seasons , Burkina Faso/epidemiology , Mosquito Vectors , Ovum , Larva
2.
Parasite ; 31: 17, 2024.
Article in English | MEDLINE | ID: mdl-38530210

ABSTRACT

The sterile insect technique (SIT) involves releasing large numbers of sterile males to outcompete wild males in mating with females, leading to a decline in pest populations. In the current study, we conducted a suppression trial in Greece against the invasive dengue vector mosquito Aedes albopictus (Skuse) through the weekly release of sterile males for 22 weeks from June to September 2019. Our approach included the long-distance transport of sterile mosquitoes, and their release at a density of 2,547 ± 159 sterile males per hectare per week as part of an area-wide integrated pest management strategy (AW-IPM). The repeated releases of sterile males resulted in a gradual reduction in egg density, reaching 78% from mid-June to early September. This reduction remained between 70% and 78% for four weeks after the end of the releases. Additionally, in the SIT intervention area, the ovitrap index, representing the percentage of traps containing eggs, remained lower throughout the trial than in the control area. This trial represents a significant advance in the field of mosquito control, as it explores the viability and efficacy of producing and transporting sterile males from a distant facility to the release area. Our results provide valuable insights for future SIT programmes targeting Ae. Albopictus, and the methodology we employed can serve as a starting point for developing more refined and effective release protocols, including the transportation of sterile males over long distances from production units to intervention areas.


Title: Essai sur le terrain de la Technique de l'Insecte Stérile (TIS) ciblant la suppression d'Aedes albopictus en Grèce. Abstract: La technique de l'insecte stérile (TIS) consiste à libérer un grand nombre de mâles stériles pour supplanter les mâles sauvages lors de l'accouplement avec les femelles, entraînant ainsi un déclin des populations de nuisibles. Dans la présente étude, nous avons mené un essai de suppression en Grèce contre le moustique vecteur invasif de la dengue, Aedes albopictus (Skuse), par le biais de la libération hebdomadaire de mâles stériles pendant 22 semaines de juin à septembre 2019. Notre approche comprenait le transport sur de longues distances de moustiques stériles, et leur lâcher à une densité de 2 547 ± 159 mâles stériles par hectare et par semaine dans le cadre d'une stratégie de lutte intégrée contre les nuisibles à l'échelle de la zone (AW-IPM). Les lâchers répétés de mâles stériles ont entraîné une réduction progressive de la densité des œufs, atteignant 78 % de la mi-juin au début septembre. Cette réduction est restée entre 70 % et 78 % pendant quatre semaines après la fin des lâchers. De plus, dans la zone d'intervention de la TIS, l'indice d'oviposition, représentant le pourcentage de pièges contenant des œufs, est resté plus faible que dans la zone témoin tout au long de l'essai. Cet essai représente une avancée significative dans le domaine de la lutte contre les moustiques, car il explore la viabilité et l'efficacité de la production et du transport de mâles stériles depuis une installation éloignée vers la zone de lâcher. Nos résultats fournissent des informations précieuses pour les futurs programmes de TIS ciblant Ae. albopictus et la méthodologie que nous avons utilisée pourra servir de point de départ pour développer des protocoles de libération plus raffinés et plus efficaces, y compris le transport de mâles stériles sur de longues distances depuis les unités de production jusqu'aux zones d'intervention.


Subject(s)
Aedes , Insecta , Animals , Female , Male , Greece , Mosquito Control
3.
Nat Commun ; 15(1): 1980, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438367

ABSTRACT

The sterile insect technique is based on the overflooding of a target population with released sterile males inducing sterility in the wild female population. It has proven to be effective against several insect pest species of agricultural and veterinary importance and is under development for Aedes mosquitoes. Here, we show that the release of sterile males at high sterile male to wild female ratios may also impact the target female population through mating harassment. Under laboratory conditions, male to female ratios above 50 to 1 reduce the longevity of female Aedes mosquitoes by reducing their feeding success. Under controlled conditions, blood uptake of females from an artificial host or from a mouse and biting rates on humans are also reduced. Finally, in a field trial conducted in a 1.17 ha area in China, the female biting rate is reduced by 80%, concurrent to a reduction of female mosquito density of 40% due to the swarming of males around humans attempting to mate with the female mosquitoes. This suggests that the sterile insect technique does not only suppress mosquito vector populations through the induction of sterility, but may also reduce disease transmission due to increased female mortality and lower host contact.


Subject(s)
Aedes , Infertility, Male , Humans , Female , Male , Animals , Mice , Reproduction , Cell Communication , Insecta
4.
Insects ; 14(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835776

ABSTRACT

Pilot programs of the sterile insect technique (SIT) against Aedes aegypti may rely on importing significant and consistent numbers of high-quality sterile males from a distant mass rearing factory. As such, long-distance mass transport of sterile males may contribute to meet this requirement if their survival and quality are not compromised. This study therefore aimed to develop and assess a novel method for long-distance shipments of sterile male mosquitoes from the laboratory to the field. Different types of mosquito compaction boxes in addition to a simulation of the transport of marked and unmarked sterile males were assessed in terms of survival rates/recovery rates, flight ability and morphological damage to the mosquitoes. The novel mass transport protocol allowed long-distance shipments of sterile male mosquitoes for up to four days with a nonsignificant impact on survival (>90% for 48 h of transport and between 50 and 70% for 96 h depending on the type of mosquito compaction box), flight ability, and damage. In addition, a one-day recovery period for transported mosquitoes post-transport increased the escaping ability of sterile males by more than 20%. This novel system for the long-distance mass transport of mosquitoes may therefore be used to ship sterile males worldwide for journeys of two to four days. This study demonstrated that the protocol can be used for the standard mass transport of marked or unmarked chilled Aedes mosquitoes required for the SIT or other related genetic control programs.

5.
Parasite ; 30: 5, 2023.
Article in English | MEDLINE | ID: mdl-36762942

ABSTRACT

Balancing process efficiency and adult sterile male biological quality is one of the challenges in the success of the sterile insect technique (SIT) against insect pest populations. For the SIT against mosquitoes, many stress factors need to be taken into consideration when producing sterile males that require high biological quality to remain competitive once released in the field. Pressures of mass rearing, sex sorting, irradiation treatments, packing, transport and release including handling procedures for each step, add to the overall stress budget of the sterile male post-release. Optimizing the irradiation step to achieve maximum sterility while keeping off-target somatic damage to a minimum can significantly improve male mating competitiveness. It is therefore worth examining various protocols that have been found to be effective in other insect species, such as dose fractionation. A fully sterilizing dose of 70 Gy was administered to Aedes aegypti males as one acute dose or fractionated into either two equal doses of 35 Gy, or one low dose of 10 Gy followed by a second dose of 60 Gy. The two doses were separated by either 1- or 2-day intervals. Longevity, flight ability, and mating competitiveness tests were performed to identify beneficial effects of the various treatments. Positive effects of fractionating dose were seen in terms of male longevity and mating competitiveness. Although applying split doses generally improved male quality parameters, the benefits may not outweigh the added labor in SIT programmes for the management of mosquito vectors.


Title: Fractionnement de la dose d'irradiation chez les moustiques Aedes aegypti adultes. Abstract: Équilibrer l'efficacité du processus et la qualité biologique des mâles adultes stériles est l'un des défis du succès de la technique des insectes stériles (TIS) contre les populations d'insectes nuisibles. Pour la TIS contre les moustiques, de nombreux facteurs de stress sont à prendre en compte lors de la production de mâles stériles qui nécessitent une haute qualité biologique pour rester compétitifs une fois relâchés au champ. Les pressions de l'élevage en masse, du triage par sexe, des traitements d'irradiation, de l'emballage, du transport et de la libération, y compris les procédures de manipulation pour chaque étape, s'ajoutent au budget de stress global du mâle stérile après la libération. L'optimisation de l'étape d'irradiation pour atteindre une stérilité maximale tout en minimisant les dommages somatiques hors cible peut améliorer considérablement la compétitivité de l'accouplement des mâles et il est donc important d'examiner divers protocoles qui se sont révélés efficaces chez d'autres espèces d'insectes, comme le fractionnement de dose. Une dose entièrement stérilisante de 70 Gy a été administrée aux mâles Aedes aegypti en une dose unique ou fractionnée en deux doses égales de 35 Gy, ou une faible dose de 10 Gy suivie d'une seconde dose de 60 Gy. Les deux doses étaient séparées par des intervalles de 1 ou 2 jours. Des tests de longévité, d'aptitude au vol et de compétitivité à l'accouplement ont été réalisés pour identifier les effets bénéfiques des différents traitements. Des effets positifs de la dose de fractionnement ont été observés en termes de longévité des mâles et de compétitivité à l'accouplement. Bien que l'application de doses fractionnées améliore généralement les paramètres de qualité des mâles, les avantages peuvent ne pas compenser le travail supplémentaire dans les programmes TIS pour la gestion des moustiques vecteurs.


Subject(s)
Aedes , Animals , Male , Aedes/radiation effects , Reproduction , Mosquito Vectors , Insecta , Radiation Dosage , Sexual Behavior, Animal/radiation effects , Mosquito Control/methods
6.
Front Bioeng Biotechnol ; 10: 833698, 2022.
Article in English | MEDLINE | ID: mdl-36051578

ABSTRACT

The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.

7.
Front Bioeng Biotechnol ; 10: 942654, 2022.
Article in English | MEDLINE | ID: mdl-36172019

ABSTRACT

The developmental stage of the mosquito is one of the main factors that affect its response to ionizing radiation. Irradiation of adults has been reported to have beneficial effects. However, the main challenge is to immobilize and compact a large number of adult male mosquitoes for homogenous irradiation with minimal deleterious effects on their quality. The present study investigates the use of nitrogen in the irradiation of adult Aedes albopictus and Ae. aegypti. Irradiation in nitrogen (N2) and in air after being treated with nitrogen (PreN2) were compared with irradiation in air at gamma radiation doses of 0, 55, 70, 90, 110, and 125 Gy. In both species, approximately 0% egg hatch rate was observed following doses above 55 Gy in air versus 70 Gy in PreN2 and 90 Gy in N2. Males irradiated at a high mosquito density showed similar egg hatch rates as those irradiated at a low density. Nitrogen treatments showed beneficial effects on the longevity of irradiated males for a given dose, revealing the radioprotective effect of anoxia. However, irradiation in N2 or PreN2 slightly reduced the male flight ability. Nitrogen treatment was found to be a reliable method for adult mosquito immobilization. Overall, our results demonstrated that nitrogen may be useful in adult Aedes mass irradiation. The best option seems to be PreN2 since it reduces the immobilization duration and requires a lower dose than that required in the N2 environment to achieve full sterility but with similar effects on male quality. However, further studies are necessary to develop standardized procedures including containers, time and pressure for flushing with nitrogen, immobilization duration considering mosquito species, age, and density.

8.
Malar J ; 21(1): 254, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064699

ABSTRACT

BACKGROUND: South Africa has set a mandate to eliminate local malaria transmission by 2023. In pursuit of this objective a Sterile Insect Technique programme targeting the main vector Anopheles arabiensis is currently under development. Significant progress has been made towards operationalizing the technology. However, one of the main limitations being faced is the absence of an efficient genetic sexing system. This study is an assessment of an An. arabiensis (AY-2) strain carrying the full Y chromosome from Anopheles gambiae, including a transgenic red fluorescent marker, being introgressed into a South African genetic background as a potential tool for a reliable sexing system. METHODS: Adult, virgin males from the An. arabiensis AY-2 strain were outcrossed to virgin females from the South African, Kwazulu-Natal An. arabiensis (KWAG strain) over three generations. Anopheles arabiensis AY-2 fluorescent males were sorted as first instar larvae (L1) using the Complex Object Parametric Analyzer and Sorter (COPAS) and later screened as pupae to verify the sex. Life history traits of the novel hybrid KWAG-AY2 strain were compared to the original fluorescent AY-2 strain, the South African wild-type KWAG strain and a standard laboratory An. arabiensis (Dongola reference strain). RESULTS: The genetic stability of the sex-linked fluorescent marker and the integrity and high level of sexing efficiency of the system were confirmed. No recombination events in respect to the fluorescent marker were detected over three rounds of introgression crosses. KWAG-AY2 had higher hatch rates and survival of L1 to pupae and L1 to adult than the founding strains. AY-2 showed faster development time of immature stages and larger adult body size, but lower larval survival rates. Adult KWAG males had significantly higher survival rates. There was no significant difference between the strains in fecundity and proportion of males. KWAG-AY2 males performed better than reference strains in flight ability tests. CONCLUSION: The life history traits of KWAG-AY2, its rearing efficiency under laboratory conditions, the preservation of the sex-linked fluorescence and perfect sexing efficiency after three rounds of introgression crosses, indicate that it has potential for mass rearing. The potential risks and benefits associated to the use of this strain within the Sterile Insect Technique programme in South Africa are discussed.


Subject(s)
Anopheles , Infertility , Life History Traits , Animals , Anopheles/genetics , Female , Genomics , Larva/genetics , Male , Mosquito Control/methods , Mosquito Vectors/genetics , Pupa , South Africa
9.
Front Bioeng Biotechnol ; 10: 876675, 2022.
Article in English | MEDLINE | ID: mdl-35923573

ABSTRACT

Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male's flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device's overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or "shade"), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes' flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.

10.
Sci Rep ; 12(1): 6242, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422488

ABSTRACT

Reproductive sterility is the basis of the sterile insect technique (SIT) and essential for its success in the field. Numerous factors that influence dose-response in insects have been identified. However, historically the radiation dose administered has been considered a constant. Efforts aiming to standardize protocols for mosquito irradiation found that, despite carefully controlling many variable factors, there was still an unknown element responsible for differences in expected sterility levels of insects irradiated with the same dose and handling protocols. Thus, together with previous inconclusive investigations, the question arose whether dose really equals dose in terms of biological response, no matter the rate at which the dose is administered. Interestingly, the dose rate effects studied in human nuclear medicine indicated that dose rate could alter dose-response in mammalian cells. Here, we conducted experiments to better understand the interaction of dose and dose rate to assess the effects in irradiated mosquitoes. Our findings suggest that not only does dose rate alter irradiation-induced effects, but that the interaction is not linear and may change with dose. We speculate that the recombination of reactive oxygen species (ROS) in treatments with moderate to high dose rates might minimize indirect radiation-induced effects in mosquitoes and decrease sterility levels, unless dose along with its direct effects is increased. Together with further studies to identify an optimum match of dose and dose rate, these results could assist in the development of improved methods for the production of high-quality sterile mosquitoes to enhance the efficiency of SIT programs.


Subject(s)
Infertility , Animals , Humans , Insecta , Mammals , Pupa/radiation effects , Radiation Dosage
11.
Sci Rep ; 12(1): 2561, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169252

ABSTRACT

The sterile insect technique is a promising environmentally friendly method for mosquito control. This technique involves releasing laboratory-produced sterile males into a target field site, and its effectiveness may be affected by the extent of adult mosquito predation. Sterile males undergo several treatments. Therefore, it is vital to understand which treatments are essential in minimizing risks to predation once released. The present study investigates the predation propensity of four mantis species (Phyllocrania paradoxa, Hymenopus coronatus, Blepharopsis mendica, Deroplatys desiccata) and two gecko species (Phelsuma standingi, P. laticauda) on adult Aedes aegypti, Ae. albopictus and Anopheles arabiensis mosquitoes in a laboratory setting. First, any inherent predation preferences regarding mosquito species and sex were evaluated. Subsequently, the effects of chilling, marking, and irradiation, on predation rates were assessed. The selected predators effectively preyed on all mosquito species regardless of the treatment. Predation propensity varied over days for the same individuals and between predator individuals. Overall, there was no impact of laboratory treatments of sterile males on the relative risk of predation by the test predators, unless purposely exposed to double the required sterilizing irradiation dose. Further investigations on standardized predation trials may lead to additional quality control tools for irradiated mosquitoes.


Subject(s)
Aedes , Lizards , Mantodea , Mosquito Control/methods , Predatory Behavior , Animals
12.
Insects ; 12(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924539

ABSTRACT

The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.

13.
Insects ; 12(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445407

ABSTRACT

A mosquito's life cycle includes an aquatic phase. Water quality is therefore an important determinant of whether or not the female mosquitoes will lay their eggs and the resulting immature stages will survive and successfully complete their development to the adult stage. In response to variations in laboratory rearing outputs, there is a need to investigate the effect of tap water (TW) (in relation to water hardness and electrical conductivity) on mosquito development, productivity and resulting adult quality. In this study, we compared the respective responses of Aedes aegypti and Ae. albopictus to different water hardness/electrical conductivity. First-instar larvae were reared in either 100% water purified through reverse osmosis (ROW) (low water hardness/electrical conductivity), 100% TW (high water hardness/electrical conductivity) or a 80:20, 50:50, 20:80 mix of ROW and TW. The immature development time, pupation rate, adult emergence, body size, and longevity were determined. Overall, TW (with higher hardness and electrical conductivity) was associated with increased time to pupation, decreased pupal production, female body size in both species and longevity in Ae. albopictus only. However, Ae. albopictus was more sensitive to high water hardness/EC than Ae. aegypti. Moreover, in all water hardness/electrical conductivity levels tested, Ae. aegypti developed faster than Ae. albopictus. Conversely, Ae. albopictus adults survived longer than Ae. aegypti. These results imply that water with hardness of more than 140 mg/l CaCO3 or electrical conductivity more than 368 µS/cm cannot be recommended for the optimal rearing of Aedes mosquitoes and highlight the need to consider the level of water hardness/electrical conductivity when rearing Aedes mosquitoes for release purposes.

14.
Insects ; 11(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202973

ABSTRACT

Successful implementation of the sterile insect technique (SIT) against Aedes albopictus and Anopheles arabiensis relies on a continuous supply of sterile males. To meet this requirement, optimization of the mass-rearing techniques is needed. This study, therefore, aims to assess a new mass-rearing cage (MRC) in terms of egg production efficiency and egg hatch rate (quality). In addition, adult survival was evaluated based on a cage adult-index for Ae. albopictus. Moreover, the cage's suitability for use in mass An. arabiensis egg production was compared to that of the FAO/IAEA Anopheles reference cage. In Ae. albopictus rearing, the new MRC produced 1,112,110 eggs per cage following six blood meals, with minimum loss of eggs in the egging water. Furthermore, the adult index gave a good proxy of daily mortality rates in Ae. albopictus. In An. arabiensis rearing, about 130,000 eggs per egg batch were collected both from the new and the reference MRC. These findings suggest that the new MRC prototype is efficient in terms of egg production and can be used for mass-rearing in SIT programs targeting Ae. albopictus as well as An. arabiensis. The adult index was also positively validated for the detection of unusual mortality rates in Ae. albopictus mass-rearing facilities. Overall, the new MRC has shown several advantages; however, further improvements are necessary to minimize escapes during the egg collection processes.

15.
Parasite ; 27: 43, 2020.
Article in English | MEDLINE | ID: mdl-32553098

ABSTRACT

The production of a large number of mosquitoes of high biological qualities and reliable sex sorting before release are key challenges when applying the sterile insect technique as part of an area-wide integrated pest management approach. There is a need to fully evaluate the production capacity of the equipment developed in order to plan and maintain a daily production level for large-scale operational release activities. This study aimed to evaluate the potential use of the FAO/IAEA larval rearing unit for Aedes aegypti and the subsequent female contamination rate after sex sorting with a Fay-Morlan glass separator. Trays from each rack were tilted and their contents sorted either for each individual tray or after mixing the content of all trays from the rack. The pupal production and the female contamination rate were estimated with respect to day of collection, position of the tray, type of pupae collection, and sorting operator. Results showed significant daily variability of pupal production and female contamination rate, with a high male pupal production level achieved on the second day of collection and estimated female contamination of male pupae reached around 1%. Neither tray position nor type of pupae collection affected the pupal production and female contamination rate. However, the operator had a significant effect on the female contamination rate. These results highlight the need to optimize pupal production at early days of collection and to develop a more effective and automated method of sex separation.


TITLE: Développement larvaire et production de pupes d'Aedes aegypti dans le système d'élevage de masse de la FAO/AIEA et facteurs influençant l'efficacité de la séparation des sexes. ABSTRACT: La production d'un grand nombre de moustiques de haute qualité biologique et le tri des sexes avant les lâchers sont des défis clés lors de l'application de la technique des insectes stériles, dans le cadre d'une approche de lutte intégrée contre les ravageurs à l'échelle d'une zone. Il est nécessaire d'évaluer pleinement la capacité de production des équipements développés afin de planifier et de maintenir un niveau de production quotidien pour les activités de libération opérationnelle à grande échelle. Cette étude visait à évaluer l'utilisation potentielle de l'unité d'élevage larvaire FAO/AIEA pour Aedes aegypti et le taux de contamination par des femelles après le tri sexuel avec un séparateur en verre Fay­Morlan. Les plateaux de chaque rack ont été inclinés et leur contenu trié soit pour chaque plateau, soit après avoir mélangé le contenu de tous les plateaux du rack. La production de pupes et le taux de contamination par des femelles ont été estimés en fonction du jour de collecte, de la position du bac, du type de collecte des pupes et de l'opérateur du tri. Les résultats ont montré une variabilité quotidienne significative de la production de pupes et du taux de contamination par des femelles, avec un niveau élevé de production de pupes mâles atteint le deuxième jour de collecte et la contamination estimée des pupes mâles par des femelles a atteint environ 1 %. Ni la position du plateau ni le type de collecte des pupes n'ont affecté la production de pupes et le taux de contamination par des femelles. Cependant, l'opérateur avait un effet significatif sur le taux de contamination par les femelles. Ces résultats mettent en évidence la nécessité d'optimiser la production des pupes dès les premiers jours de la collecte et de développer une méthode de séparation des sexes plus efficace et automatisée.


Subject(s)
Aedes , Entomology , Pest Control , Aedes/growth & development , Animals , Entomology/methods , Female , Larva/growth & development , Male , Pest Control/methods , Pupa/growth & development
16.
Parasit Vectors ; 13(1): 198, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32303257

ABSTRACT

BACKGROUND: Radiation induced sterility is the basis of the Sterile Insect Technique, by which a target insect pest population is suppressed by releasing artificially reared sterile males of the pest species in overflooding numbers over a target site. In order for the sterile males to be of high biological quality, effective standard irradiation protocols are required. Following studies investigating the effects of mosquito pupae irradiation in water versus in air, there is a need to investigate the oxy-regulatory behavior of mosquito pupae in water to better understand the consequences of irradiation in hypoxic versus normoxic conditions. METHODS: Pupae of Aedes aegypti, Ae. albopictus, and Anopheles arabiensis were submerged in water inside air-tight 2 ml glass vials at a density of 100 pupae/ml and the dissolved oxygen (DO) levels in the water were measured and plotted over time. In addition, male pupae of Ae. aegypti (aged 40-44 h), Ae. albopictus (aged 40-44 h) and An. arabiensis (aged 20-24 h) were irradiated in a gammacell220 at increasing doses in either hypoxic (water with < 0.5% O2 content) or normoxic (in air) conditions. The males were then mated to virgin females and resulting eggs were checked for induced sterility. RESULTS: All three species depleted the water of DO to levels under 0.5% within 30 minutes, with An. arabiensis consuming oxygen the fastest at under 10 minutes. Following irradiation, the protective effect of hypoxia was observed across species and doses (P < 0.0001), increasing at higher doses. This effect was most pronounced in An. arabiensis. CONCLUSIONS: The consumption of dissolved oxygen by pupae submerged in water was significantly different between species, indicating that their oxy-regulatory capacity seems to have possibly evolved according to their preferred breeding site characteristics. This needs to be considered when sterilizing male mosquitoes at pupal stage in water. Depending on species, their DO consumption rates and their density, irradiation doses needed to achieve full sterility may vary significantly. Further assessments are required to ascertain optimal conditions in terms of ambient atmosphere during pupal irradiation to produce competitive sterile males, and temperature and density dependent effects are expected.


Subject(s)
Aedes/radiation effects , Anopheles/radiation effects , Hypoxia , Pupa/radiation effects , Sterilization/methods , Animals , Female , Infertility, Male , Male , Mosquito Control/methods , Mosquito Vectors/radiation effects , Water/chemistry
17.
PLoS Negl Trop Dis ; 13(9): e0007775, 2019 09.
Article in English | MEDLINE | ID: mdl-31553724

ABSTRACT

INTRODUCTION: The widespread emergence of resistance to insecticides used to control adult Aedes mosquitoes has made traditional control strategies inadequate for the reduction of various vector populations. Therefore, complementary vector control methods, such as the Sterile Insect Technique, are needed to enhance existing efforts. The technique relies on the rearing and release of large numbers of sterile males, and the development of efficient and standardized mass-rearing procedures and tools is essential for its application against medically important mosquitoes. METHODS: In the effort to reduce the cost of the rearing process, a prototype low-cost plexiglass mass-rearing cage has been developed and tested for egg production and egg hatch rate in comparison to the current Food and Agriculture Organization/International Atomic Energy Agency (FAO/IAEA) stainless-steel cage. Additionally, an adult-index was validated and used as a proxy to estimate the mosquito survival rates by counting the number of male and female mosquitoes that were resting within each of the 6 squares at a given point of time each day in the cage. RESULTS: The study has shown that the prototype mass-rearing cage is cheap and is as efficient as the FAO/IAEA stainless-steel cage in terms of egg production, with even better overall egg hatch rate. The mean numbers of eggs per cage, after seven cycles of blood feeding and egg collection, were 969,789 ± 138,101 and 779,970 ± 123,042, corresponding to 81 ± 11 and 65 ± 10 eggs per female over her lifespan, in the prototype and the stainless-steel-mass-rearing cages, respectively. The longevity of adult male and female mosquitoes was not affected by cage type and, the adult-index could be considered as an appropriate proxy for survival. Moreover, the mass-rearing cage prototype is easy to handle and transport and improves economic and logistic efficiency. CONCLUSION: The low-cost mass-rearing prototype cage can be recommended to produce Ae. aegypti in the context of rear and release techniques. The proposed adult-index can be used as a quick proxy of mosquito survival rates in mass-rearing settings.


Subject(s)
Aedes/physiology , Housing, Animal/economics , Aedes/growth & development , Animal Husbandry/instrumentation , Animal Husbandry/methods , Animals , Female , Housing, Animal/standards , Male , Mosquito Vectors
18.
Parasit Vectors ; 12(1): 435, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31500662

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) for use against mosquitoes consists of several steps including the production of the target species in large numbers, the separation of males and females, the sterilization of the males, and the packing, transport and release of the sterile males at the target site. The sterility of the males is the basis of the technique; for this, efficient and standardized irradiation methods are needed to ensure that the required level of sterility is reliably and reproducibly achieved. While several reports have found that certain biological factors, handling methods and varying irradiation procedures can alter the level of induced sterility in insects, few studies exist in which the methodologies are adequately described and discussed for the reproductive sterilization of mosquitoes. Numerous irradiation studies on mosquito pupae have resulted in varying levels of sterility. Therefore, we initiated a series of small-scale experiments to first investigate variable parameters that may influence dose-response in mosquito pupae, and secondly, identify those factors that potentially have a significantly large effect and need further attention. METHODS: In this study, we compiled the results of a series of experiments investigating variable parameters such as pupal age (Aedes aegypti), pupal size (Ae. aegypti), geographical origin of mosquito strains (Ae. aegypti and Ae. albopictus), exposure methods (in wet versus dry conditions, Ae. albopictus) and subsequently in low versus high oxygen environments [submerged in water (low O2 (< 5 %)] and in air [high O2 (~ 21 %)] on the radiosensitivity of male pupae (Ae. aegypti, Ae. albopictus and Anopheles arabiensis). RESULTS: Results indicate that radiosensitvity of Ae. aegypti decreases with increasing pupal age (99% induced sterility in youngest pupae, compared to 93% in oldest pupae), but does not change with differences in pupal size (P = 0.94). Differing geographical origin of the same mosquito species did not result in variations in radiosensitivity in Ae. aegypti pupae [Brazil, Indonesia, France (La Reunion), Thailand] or Ae. albopictus [Italy, France (La Reunion)]. Differences in induced sterility were seen following irradiation of pupae that were in wet versus dry conditions, which led to further tests showing significant radioprotective effects of oxygen depletion during irradiation procedures in three tested mosquito species, as seen in other insects. CONCLUSIONS: These findings infer the necessity to further evaluate significant factors and reassess dose-response for mosquitoes with controlled variables to be able to formulate protocols to achieve reliable and reproducible levels of sterility for application in the frame of the SIT.


Subject(s)
Aedes/radiation effects , Anopheles/radiation effects , Mosquito Vectors/radiation effects , Pupa/radiation effects , Radiation Tolerance , Whole-Body Irradiation/standards , Animals , Entomology/standards , Male
19.
Parasite ; 26: 57, 2019.
Article in English | MEDLINE | ID: mdl-31535969

ABSTRACT

The mass production of mosquitoes is becoming more wide-spread due to the increased application of the sterile insect technique (SIT) and other genetic control programmes. Due to the variable availability and high cost of the bovine liver powder (BLP) constituent of many current larval diets, there is an urgent demand for new ingredients in order to support sustainable and efficient mosquito production while reducing rearing cost, without affecting the quality of the insects produced. Two black soldier fly (BSF) powder-based diet formulations (50% tuna meal, 35% BSF powder, 15% brewer's yeast and 50% tuna meal + 50% BSF powder) were tested for their suitability to support the development of Aedes aegypti and Ae. albopictus mosquitoes in mass-rearing conditions. Overall, the results indicate that the use of the BSF powder did not negatively impact the development and quality of the produced insects in terms of time to pupation, adult production and male flight ability. Furthermore, depending on the species and diet formulations, there were improvements in some parameters such as female body size, egg production, egg hatch rate and male longevity. BSF powder is a valuable ingredient that can effectively replace costly BLP for the mass production of high quality Ae. aegypti and Ae. albopictus mosquitoes. Both diet formulations can be used for Ae. aegypti showing high plasticity to nutrition sources. However, for Ae. albopictus we recommend the combination including brewer's yeast.


TITLE: La poudre de larves de mouche-soldat noire (Hermetia illucens) comme ingrédient alimentaire pour l'élevage de masse des moustiques Aedes. ABSTRACT: L'élevage de masse de moustiques est de plus en plus répandu en raison de l'application de la technique de l'insecte stérile et d'autres techniques de lutte génétique. En raison de la disponibilité variable et du coût élevé de la poudre de foie de bovin, ingrédient de nombreux régimes larvaires, il devient urgent de trouver de nouveaux ingrédients afin de soutenir une production durable et efficace des moustiques, en réduisant les coûts d'élevage sans toutefois affecter la qualité des insectes produits. Deux formulations de régime à base de poudre de mouche-soldat noire (50 % farine de thon + 35 % poudre de mouche-soldat noire + 15 % levure de bière et 50 % farine de thon + 50 % poudre de mouche-soldat noire) ont été évaluées pour déterminer leur capacité à soutenir le développement larvaire d'Aedes aegypti et Ae. albopictus dans des conditions d'élevage de masse. Dans l'ensemble, les résultats indiquent que l'utilisation de la poudre de mouche-soldat noire n'a pas d'impact négatif sur le développement larvaire et la qualité des insectes produits en termes de temps de développement, de production d'adultes et de capacité de vol des mâles. En outre, en fonction de l'espèce et de la formulation du régime, certains paramètres tels que la taille des femelles, la production d'œufs, le taux d'éclosion des œufs et la longévité des mâles ont été améliorés. La poudre de mouche-soldat noire est un ingrédient de valeur qui peut remplacer efficacement la coûteuse poudre de foie de bovin pour la production en masse de moustiques Ae aegypti et Ae. albopictus de grande qualité. Les deux formules de régime peuvent être utilisées pour Ae. aegypti qui montre une grande plasticité à la source de nutrition. Cependant, pour Ae. albopictus, nous recommandons la formulation comprenant la levure de bière.


Subject(s)
Aedes/growth & development , Animal Feed/analysis , Powders/administration & dosage , Simuliidae/chemistry , Animals , Female , Larva/growth & development , Powders/chemistry
20.
Sci Rep ; 9(1): 11403, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31388041

ABSTRACT

The black soldier fly, yellow mealworm and house fly are known for their wide distribution, ease of breeding, and environmental and nutritional attributes. Diets based on these fly proteins for the rearing of mosquito larvae are more accessible and affordable when compared to the reference IAEA diet which consists largely of costly livestock products such as bovine liver powder. Following a step-by-step assessment, we developed diet mixtures based on insect meal for the optimal mass production of Aedes albopictus and Ae. aegypti. Based on the assessed parameters including mosquito egg hatch, body size, flight ability, longevity and diet cost reduction, two mixtures are recommended: 1/2 tuna meal (TM) + 7/20 black soldier fly (BSF) + 3/20 brewer's yeast and 1/2 TM + 1/2 BSF. These findings, which could be adapted to other mosquito species, provide alternative protein sources for mass rearing insects for genetic control strategies.


Subject(s)
Aedes/physiology , Animal Feed , Breeding/methods , Laboratory Animal Science/methods , Simuliidae , Animals , Female , Larva/physiology , Male , Mosquito Control/methods , Pest Control, Biological/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...